THEORY OF LIGHTNING

B. N. Kozlov UDC 537.521.7

1. The Mechanism by Which Lightning Develops. - The development of lightning is an oscillatory relax-
ation process which is basically electromagnetic in nature, common to both linear and ball forms of lightning
[1, 2]. Each oscillatory cycle of the lightning consists of stages of "electromagnetic activity® and a subsequent
stage of "electromagnetic calm.” The process is related to a charged channel —a column of air emerging
from a cloud, which is breaking up in the atmosphere, separated from the surrounding medium of ionized air
and of reduced density. The charged channel of lightning, in view of the oscillatory mode of the process,
periodically transfers from a state of a weakly ionized almost nonconducting charged path into a good con-
ducting column and vice versa. Along the lightning channel, in the same way as along a single-~conductor wave~
guide line of the rod antenna type, from the cloud to the head of the channel a particular kind of aperiodic elec~
tromagnetic wave (a channel wave) travels governing the transfer of energy and charge of the lightning. The
propagation of the channel wave is extremely nonlinear and nonequilibrial, since these waves are characterized
by the ability to create a nonequilibrium high electrical conductivity in the channel behind the wave front,
necessary for its propagation, which depends on the wave field, by the ionizing action of the wave field. The
channel wave arises at the beginning of each cycle at the point where the axis of the channel intersects the sur-
face of the cloud, after which it propagates hemispherically in space outside the cloud with a speed close to the
velocity of light (determined by the solution of Maxwell's equations). In the cloud, while the channel wave is
propagating, due to streamer discharges from the surfaces of ice crystals and drops of water, high electrical
conductivity rapidly occurs, as a result of which the cloud becomes a good conductor. This fact, i.e. the high
conductivity of the cloud during the lightning discharge, derived theoretically in a separate paper, in this case
can be regarded as experimental, since the energy of the lightning close to the initial electrical energy of the
cloud [3] can be obtained from the cloud only when the cloud has high electrical conductivity. The energy of the
lightning is transferred by the channel waves mainly outside the lightning channel in the form of electromag-
netic-field energy and is only absorbed in the volume of the channel. The electromagnetic field of the channel
wave, propagating in air outside the lightning channel with the velocity of light, penetrates into the volume of
the channel from the sides by diffraction. Hence, the channel wavefront moves along the channel outside it and
along its surface, and also inside the channel at least in a thin surface layer, with the velocity of light. The
field of the channel wave in the channel produces a macroscopic (volume-distributed) ensemble of electron
avalanches which occur from the initial electrons or ions comprising the "™oare" ionization of the channel. The
intense electron-avalanche process occurring almost simultaneously immediately behind the wave-front leads
to almost ideal electrical conductivity of the part of the channel behind the wavefront [2], while the extremely
small electrical conductivity of the parts of the channel in front of the ‘wavefront where there is no field is
unconnected with the Joule losses. Hence, the channel waves propagate along initially weakly ionized almost
nonconducting channels in the same way as along good-conductor waveguide lines. The more high~-powered the
channel wave the greater the electrical conductivity connected with it by the field behind the wavefront, and
the closer the propagation is to ideal propagation. Under lightning conditions the channel waves supplied with
very high potentials, propagate practically ideally with the velocity of light, the extension of the lightning
channel being unconnected with the considerable transfer of energy and charge of the lightning, and occurs
abruptly with the velocity of longitudinal electrical drift of the charges, periodically introduced into the
channel by the channel electromagnetic waves propagating with electromagnetic velocity, The process of
propagation of the lightning is therefore a two-velocity process.

In the regions outside the channel, in particular in the extension of the channel along its axis, the
propagating field cannot produce considerable electrical conductivity since outside the channel there is insuf-
ficient bare charge density. It is also important thatin the lightning channel, (particularly the strongly heated
region on the axis of the channel) electron capture, in view of the high temperature, should not occur, and the
excess negative charges exist in the form of free electrons. The increased temperature of the charnel and the
reduced density of the air in it lead to improved conditions for current flow in the channel (in the axial core of
the channel) compared with the shell (the remaining part of the channel) and correspondingly to an axial current
concentration leading to additional heating of the channel, etc. '
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When it reaches the head of the channel, the channel wave is reflected, since the geometrical extension
of the channel is a region where, in view of the absence of considerable bare ionization, there may not be high
electrical conductivity, and this region therefore behaves as a dielectric. The channel wave is reflected so
that from the head of the channel, as from the end of a cutoff single~conductor waveguide line, part of the
energy is lost as radiation. The reflected wave is usually almost immediately absorbed in the leading part of
the channel, where the resistance of the channel is particularly high. The absorption of the wave energy pri-
marily in the leading part of the channel to a certain extent is analogous to the well-known fact of the absorp-
tion of the energy of an elastic wave at the end of a converging filament (the "cowboy whip effect™. In view of
the gradual increase in the resistance in the leading part of the channel and the "blurring™ of the wavefront the
intensity of the reflected and radiated waves is comparatively small. (As is well known, at the blurred
boundary of the media and in the case of blurred wavefronts, the waves may decay generally without reflection
and radiation.)

With the attenuation of the channel electromagnetic wave the stage of electromagnetic activity is completed
in each cycle, and the stage of electromagnetic calm begins in the same cycle. After the attenuation of the
channel wave the channel remains charged up to the potential of the cloud and has high electrical conductivity
everywhere, except the part at the boundary with the cloud. In the part close to the cloud the electrical con-
ductivity drops rapidly due to the very intense recombination and capture processes, since the electric intensity
on the surface of the channel in this part is less than the critical value E*, necessary to maintain high electri~-
cal conductivity. The channel at the instant of transition from the active to the calm state is therefore dis-
connected from the cloud and ceases to obtain energy and charge from it. The electric intensity on the surface
of the leading part of the channel at the beginning of the calm period is extremely large (the "sharp-point
effect™ and much greater than the intensity of the external field (produced by the charges of the remaining parts
of the channel and the charges of the cloud). The external field (that is, outside the head of the channel) is not
therefore in the initial phase of the calm stage of the directing action on the drift of the charges of the leading
part of the channel, i.e., in'the extension of the channel. The drift motion of the leading part of the channel in
these initial phases of the calm stages is determined by the inherent field of the charges of the head of the
channel, as a result of which it is unstable and chaotic. Any random perturbation changes the direction of
motion of the head of the channel, and the high electrical conductivity of the channel ensures the development of
instabilities by the influx of energy. At these instants, in addition to chaotic wandering of the head of the
channel branching of the channel due to instability is possible. The head of the channel, due to the sharply
increased concentration of the field and energy dissipation [2], glows in this phase particularly brightly, and its
velocity, constantly changing direction, has the highest absolute value. The unordered motions of the head of
the channel in the initial phase of the calm stage of each cycle are unrelated to the systematic displacement of
the head of the channel in any specified direction, for example, along the external field, which the head of the
channel at these instants does not experience in view of its smallness compared with the inherent field of the
charges of the head of the channel. The head of the lightning channel at this time wanders randomly inside a
volume, forming distinctive junctions of the trajectory of the head, and on average remains on the spot although
it moves rapidly.

The omnidirectional drift spreading out of the channel charges leads to a reduction in the electric field
at the surface of the channel. When this field strength becomes less than a critical value E* everywhere on the
surface of the channel, ionization ceases, and intense relaxation recombination and capture processes rapidly
reduce (in a time of the order of 1078-10~1 sec) the nonequilibrium high conductivity in the channel. The drift
spreading out of the charges in the channel when there is no high electrical conductivity leads to a further
reduction in the field strength on its surface, in particular, in the region of the head. The external field
becomes considerable compared with the natural field of the charges in the channel head. Under these con-
ditions the field which is external to the charges in the channel head directs the drift motion of the charges of
the head, and this motion becomes ordered and not random. Beginning from this instant the second phase of
the calm stage begins, connected with the systematic progress of the head of the discharge. With the relax-
ational reduction in the potential of the channel due to spreading out of the charges when the electrical con-
ductivity of the channel is low, particularly at the boundary with the cloud, the potential difference between the
cloud and the channel and the field at the initial point of the channel (the point where the axis of the channel
intersects the surface of the cloud) increase. At the instant when the intensity at the initial point on the surface
of one of the crystals.or drops of the cloud reaches the critical value required for a channel wave to occur (the
electromagnetic wave of spark breakdown) at the initial point the next channel wave occurs, which corresponds
to the beginning of a new pulsation cycle.
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At each cycle the channel is again regenerated and extended by a certain amount due to the longitudinal
drift of the charges acted upon by the field. The self-propagating process of the development of the lightning
may occur from any prolonged weakly ionized region of small dimensions {the nucleus of the lightning), if this
region is in air and is connected with a cloud having a fairly high potential. Channel waves are usually pro-
duced on sharp needle-shaped crystals which exist in storm clouds {4], since the temperature of the storm
clouds is negative [5-7].

When making observations from large distances the structure of the junction points, i.e., the regions of
random wandering of the channel head, is usually not seen, and the junction points are observed as wider and
brighter parts of the channel with possible breaks in the trajectory or branching. Since only rapid random
motion of the head of the discharge occurs at the junction points without any systematic progress of the dis-
charge, in observations the junction points are perceived as Minterruptions." Thus, "interruptions of the
multistage leader™ of the lightning are in fact phases of particularly rapid motion, which, although random, do
not lead to a constant systematic displacement of the discharge. The channel with clearly visible junction
points of considerable dimensions is perceived as "beaded lightning®™ [3]. A more detailed consideration en-
ables one to observe very rapid random motion of the head of the channel at each junction point with very bright
illumination. For small velocities of motion of the head of the channel, when the directed displacement of the
head of the channel during a single cycle is small, the sequence of junction points which occur rapidly one after
another, is perceived from considerable distances as a single moving junction point, which can be identified
with ball lightning of large dimensions. The usual ball lightning is a displaced region of illumination of the
channel head with a weak very slowed down version of the lightning process when the channel as a whole is
invisible [1, 2].

By definition [2] the channel is a charge-current region of the channel electromagnetic wave, i.e., the
part of the channel behind the wavefront where the field of the wave, propagating with the velocity of light,
produces high electrical conductivity, which depends on the electric field strength, and high current concen~
trations and uncompensated space charges occur due to the action of the field. The vertex of the channel is at
the point of intersection of the channel axis and the front of the channel wave and moves along the axis of the
channel with the velocity of light. The channel, as an element of the channel electromagnetic wave, is essen~
tially an electromagnetic formation, always tangent to the electromagnetic wavefront at its vertex. This is
the main difference between the channels and streamers, which are usually described by the equations of elec~
trostatics, i.e., they are electrostatic formations and propagate with a velocity much less than the velocity of
light [8-10]. Spark discharges on a laboratory scale are accurately described by streamer theory [8-10]. This
theory, confirmed theoretically and experimentally in spark gaps in the laboratory, is not applicable, however,
to lightning discharges [2]. Under lightning conditions the electromagnetic mechanism of relaxation oscillations
and the propagation of energy, charge, and current fronfs with the velocity of electromagnetic waves as the
channel of the discharge progresses with the drift velocity, i.e., a two-velocity mode [1, 2], is decisive., Accord-
ing to the relaxation picture, the vertex of the channel moves from the source (cloud) to the vertex of the dis-
charge, after which the channel disappears, and after a certain time the next channel propagates from the
source to thehead,etc. According to streamer theory lightning is the propagation of a single streamer, pro-
gressing with a velocity much less than the velocity of light, According to the relaxation theory the lightning
process is determined by successive transits from the cloud to the head of the discharge, which moves with the
drift velocity, of many channels (of the order of hundreds), each of which propagates with the velocity of light.

The relaxation oscillatory mechanism of the discharge acts over kilometer lengths of the discharge. The
relaxation theory is constructed asymptotically, i.e., for conditions far from the streamer-relaxation boundary,
like the streamer theory [8-10], it is constructed asymptotically for conditions far from the avalanche-
streamer transition. The transition regions are extremely complex for calculations. The asymptotic descrip-
tion far from the transition region corresponds quite well to the actual conditions of the lightning, But the
asymptotic description which relates to the conditions far from the transition region between the streamer and
relaxation mechanisms, does not determine the parameters of the transition region. One of the main mani-
festations of the relaxation mechanism of a spark discharge is the gradual nature of the propagation of the
lightning. The smallest observed length of the pulsation stage of the lightning is 10 m [3], so that the relax~-
ation mechanism occurs for discharge lengths greater than this value. Lightning is never shorter than several
hundred meters [11]. Hence, the boundary between the streamer and relaxation mechanisms of the spark dis~
charge in atmospheric air corresponds to a discharge length of hundreds of meters. The electromatic-relax-
ation picture of a lightning discharge agrees quite well with observational data. Regularly repeating propa-
gation of channel waves from the cloud to the head of the channel with the velocity of light has been recorded in
observations as transient flashes of a lightning channel — flickers of lightning [3, 8, 12], and in the case of
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infralightning, when the channel as a whole is invisible, it has been observedin the form of flashes of the head
of the channel, i.e., ball lightning 13, 7, 14}. From observations ot linear lightning during the flashes "bright
illumination encompasses all the stages™ [11], in which the passage of a channel in each cycle along the whole
channel from the cloud to the head occurs. An extremely important fact is the existence of lightning emerging
from the cloud but not reaching the earth [3, 8, 12, 5] which arises from relaxation theory and which has been
observed experimentally. (According to the streamer theory of a lightning discharge emerging from a cloud, it
should reach the earth.) The characteristic lengths of lightning (5 km) and its maximum length (200 km) pre-
dicted by the relaxation theory agrees with the results obtained in [3, 5, 11, 12, 15] (according to the streamer
theory the length of the lightning should be 0.2 km [10]}). The effect of the increased brightness of the head of
the lightning channel which follows from the relaxation theory has been recorded in observations [8] and appears
in all cases of ball lightning [7, 14]. The lighining process (in the ball-lightning version) has been seen most
clearly and in greatest detail on photographs [13], a description of which is given in [16]. The ‘photographs
clearly show the meandering nature of the trajectory inside the junction points, and the increased brightness of
the junction points can be seen. This has also been observed in the photographs taken by Deryugin [14]. The
approximate agreement between the minimum energy dissipation of linear lightning and the maximum energy
dissipation of ball lightning predicted by the relaxation theory has been confirmed experimentally {7, 2, 17].

An accurate mathematical description of the channel process, i.e., the relaxation electromagnetic oscil-
latory process, determining the development of the lightning, requires the solution of a nonstationary (with a
conductivity of the medium varying with time), two-dimensional (axisymmetrical) nonlinear (with the electrical
conductivity of the medium depending on the field of the wave) and nonequilibrium (the ionization of the medium
is not determined by the temperature) problem of the propagation of an electromagnetic field in a nonuniform
medium taking into account the gas-dynamic motion and thermal conductivity. These features of the process
are decisive properties and cannot be ignored in order to simplify the calculations. The extreme complexity
of the process requires a special simplified approach to its mathematical description. Such an approach is
possible due to the particulér features of the process itself. Its main feature is its cyclical nature. The
important parameters of the state of the system (the potential of the cloud, the temperature and density of the
air in the channel, and the length of the channel) do not change very much during a single cycle and can be
assumed constant within the eycle and considered to change abruptly from cycle to cycle. Each cycle moreover
decays in the electromagnetically active and calm stages, and each of the stages can be described by its own
equations taking into account its fundamental features. Thus, although all the above-mentioned features of the
process are important, and are not amenable to simultaneous consideration in view of the considerable mathe-
matical complexity, the approach formulated enables them all to be taken into account fairly effectively. The
asymptotic nature of the theory connected with the very high values of the supplying potentials leading to
pronounced electromagnetic properties of the process is also a simplifying factor. In this case equations are
used which do not describe the transitions between the electrodynamic and electrostatic regions, in the same
way as the ultrarelativistic approximation does not describe the transition to nonrelativistic relations. Hence
the equations of relaxation theory, being based on the electromagnetic picture of the phenomenon, do not trans-
fer into the equations of streamer theory [8-10], which are based on the equations of electrostatics. These are
opposite limiting cases.

When there is a charged channel (in its initial state a weakly ionized charged channel [2]), the channel
waves can propagéte in the complete absence of an external field. The self~-propagating process of the develop-
ment of the lightning, occurring without a previously constructed channel, is possible when there is a weak
external field, which has no effect on the propagation of the channel waves and only advances the head of the
discharge channel in a certain direction. An example of this is a lightning discharge from a cloud which has
two plane (parallel to one another) electrically charged layers, one of which (the N-layer) is negative and has
high electrical conductivity, and the second (the p~layer) which is situated below it, positive and not electrically
conducting. The charges of the layer, generally speaking, are not equal. Between the layers (from the negative
conducting to the positive nonconducting) a lightning discharge develops directed downwards. On reaching the
positive layer and penetrating it, the discharge continues its propagation into the external region, if there is at
least a small incipient channel there in the form of an initial weakly ionized charged channel. The channel
wave, on reaching its end, dies away after reflection and partial radiation, leaving the channel highly electri-
fied. If there is a weak external field (less than 3 MV/m), due to the small difference in charges of the layers
or the charges of other clouds, the channel will extend by directional drift, periodically acquiring energy and
charge due to the regularly passing channel waves. Hence, under conditions when the dissipative resistance of
the core of the channel, i.e., its inner part from the point where it arises to emergence from the positive layer,
is small (compared with the wave impedance of the channel), the potential difference between the main column
of the channel (its external part) and the positive layer will be equal tothe potential difference between the layers.
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In the ideal case, for mathematical simplicity, the electrical conductivity of the N-layer will be assumed to be
infinite, and the distance between the layers will be assumed to be infinitely small. In this case the cloud
becomes a double electrical layer with infinite electrical conductivity having, generally speaking, a certain
uncompensated charge per unit surface, due to the difference between the charges of the layers. The field pro-
duced by this cloud in external space can be extremely small, whereas the potential difference supplying the
discharge may be very high. From the calculation point of view this simplest model is intended primarily to
explain the main features of the channel waves and only describes very approximately the actual situation in
the atmosphere, where the N-zone and p-zone of the cloud have larger dimensions in all directions [3]. For
more detailed calculations we will use another model below in which the absence of the important effect of the
external field on the propagation of the channel waves is not so clearly seen. Physically this becomes cbvious
when the channel waves are compared with electromagnetic waves in lines, for example, in a cable. The field
of the charges in the source (the generator) has no effect on the wave propagation, and only the potential dif-
ference is important. In the case of a single-conductor line this is the potential difference between the line and
earth produced by the generator, and if the line is directed vertically, is very similar to the channel emerging
from a cloud, with the difference that the waves themselves propagating along it produce high electrical con-
ductivity in the channel.

2. Transfer of the Energy of the Lightning. The propagation of the channel waves, which carry the
energy of the lightning, is described by Maxwell's equations
rot E + w,dH/6t = 0, rot H — ¢, 0E/6t = ¥, (2.1)
g, divE = p, divH = 0,

where for air we take &= &, u= yg.

We will consider the limiting channel wave using an example in which the pattern of the field distribution
of the channel waves in space can be seen most simply, By a limiting channel wave we mean a channel wave the
field strength of which is so large that the electrical conductivity produced by the field of the wave in the chan-
nel behind the wavefront leads to a dissipative resistance (determining the Joule losses), which is negligibly
small compared with the wave impedance of the channel. Under these conditions the energy losses are negli-
gibly small and propagation occurs almost ideally. The channel in its initial state is a weakly ionized charged
channel, but behind the wavefront it becomes conducting. (Note that the usual concentration of ions in the air is
negligibly small compared with the initial air concentration in the charged channel.) In the formulation con~
sidered the pattern reduces to the propagation of a multistage electromagnetic wave along the channel like an
ideally conducting single-conductor line. The problem is solved in spherical coordinates {x, 0, ¢) in the follow-
ing formulation. We wish to determine the field of the electromagnetic wave in the conical region between an
ideally conducting plane #>64=7/2 (simulating the surface of the cloud), and a thin ideally conducting cone
0= 0«1 {simulating the surface of the part of the channel behind the wavefront}. The wave occurs at the
instant t=0 when a potential difference Vy{t) is connected in the infinitely small gap between the cone and the
plane at the point x=0. The solution is considered for a finite time interval from the initial instant t=0 when
the wave arises to the instant t) when the wavefront reaches the radius x=ay, outside the limits of which there
is no channel. The boundary conditions are that the tangential component of the electric field on the surfaces
6= 0y, 6= 6 should vanish. There are no space charges and currents in the region in which the field is deter-
mined, i.e., when 0 =x=ay, 03<0<8y. The source condition is formulated by assigning a monotonically varying
voltage Vy(t) (in the form of a power function) at the ends of the infinitely small part between the cone 6= 9, and
the plane 6= gy at the point x=0

8
¢ 0, i< 0 2.2)
lim | Egzdo = v, (1) = <%
i VO()tp’ 11 > 01 P > 0.
The solution of Maxwell's equations will be sought in the form
E=—vy®—0A/0, H=pg' rotA, (2.3)
A=Vx/z, O=Fz, t)A®), ¥ =0C(z, t)A(B), co=1/V e,

The surface charge and current densities w and j on the surfaces 6= 84, 6= 8y can be found using the well-
known boundary relations, after which the charge Q on the cone is obtained, referred to unit length of the circle
radius x, and the radial currents I on the cone Q=2mxgEy(x, 6y, t) sin 6y, I=21TXH(p (x, 0g, t) sin 9.

The functions F and G in (2.3) can be expressed in terms of @ and I as follows:

F = AjQ/2ne,A (8,), G = AJ/2me,A(0,), Ag' = (dA/AdB),sin B, 2.4)

The following equations are obtained for Q and I:
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KoQ/ox + Lalldt 4- E = 0, 8l/dz 4 0Q/0t = 0, : (2.5)

where E=Ey is the longitudinal component of the electric field, and the parameters K and L are given by
2.6)

Substituting (2.3) into Maxwell's equation (2.1) for E,=0 leads to the angular function A(6), and to the
quantity Ag in (2.4) which is given by
© A =lInctg 6/2, A, = ln ctg 6,/2. 2.7
The length of the channel a4 is related to the radius by of its greatest transverse cross section by the
equation by=g  tan gp. For a thin channel g;<1
Ay = In 2vy, vy = ao/b,.
For ideal conductivity of the channel the longitudinal component E of the electric field is zero, and for
high but finite conductivity, the longitudinal component E = E; is much less than the transverse component E .
In the region outside the channel, where there is no conductivity, the longitudinal component can be neglected in
view of its smallness. In the channel behind the-wavefront, where the electrical conductivity is high, evena
small longitudinal component is important, since it produces a considerable current. By Ohm's law we have
E = IR, (2.9)
where R is the resistance of unit length of the channel. Equations (2.5) and (2.9) are the well-known "telegraph®
equations [18, 19], which are derived here together with the concrete expressions for the parameters K and L
for channel waves directly from Maxwell's equations.

(2.8)

Since we are considering a wave which occurs at the initial instant of time t=0 at the point x=0, while
the velocity of propagation of the perturbations is finite, a wavefront will exist moving with a certain velocityc,
On the front x=x(f), by the definition of the front, and for the charge Q per unit length of the channel and
current I in the channel we have the following conditions:

~ Qlzust) = 0, I(zy, 7) = 0. (2.10)
The solution of (2.5) and (2.9) for R=0 for the conditions (2.2) and (2.10) will be sought in the self-similar
form
Q = CV(Of(BVK, I = CV\(t)g(8)/Z,
Vo = Viol?, & = alzyt), x, =ct, ¢ = Voo Z = PZ,, (2.11)
Z, = VKL,
where xg and ¢ are the radius and velocity of the wavefront respectively, and C, B, ¥ are undetermined con-
stants. Substituting (2.11) into (2.5) and (2.9) for R=0 we obtain
(1 — v*B)df/dE + py?&f + pve/p = 0, 2.12)
(1 — v*E)dg/dE + py°Eg + pbyf = 0.
For the functions f(¢), g(¢), defined by (2.11) we will take the normalization £f(0) =1 and g(0) =1, apart

from a constant factor. From (2.10) and (2.11) we have (1) =0 and g(1) =0. Hence, for the system (2.12) we
introduce the conditions

f0) =1, 2(0) =1, f(1) =0, g(1) = 0. (2.13)
The solution of (2.12) for conditions (2.13) determines the parameters B=1, v=1 and has the form
&) =1 — &), g(8) = (1 — Ep. (2.14)

Since according to (2.11) the velocity of the front is c¢= ey, the front propagates with the velocity of light.

The solution of (2.12) with the conditions (2.13) for p=0 is defined as the limit of the series of solutions
(2.14) as p—~0. The solution for p=0 therefore has the form

1, 0<<E< 1, 1, 0<<E<Y, .

Note that the iimiting transition p—0 in (2.14) reveals the physical meaning of the solution (2.15), the
direct determination of which from (2.12) and (2.13) is not completely obvious.

The voltage in the channel is given by the equation
Yoo
V = | Eexde.
6a _

(2.16)
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It follows from (2.16), (2.3), (2.4}, (2.6}, (2.7), and (2.11), that V(x, t) =CVf. Nevertheless by (2.16), and
(2.2) V{0, t) =Vg(t), and by (2.13) £{0)=1. Hence, C=1 and V(x, t) =V {t)f(¢). Comparing this with the expression
for @ from (2.11) we obtain
V = KQ. {2.17)

There are no Joule losses in the channel in the case considered. The ratio of the voltage V,{t) =V(0, 1)
at the input to the channel to the input current Iy(t) =I(0, t) for loss-free propagation is, by definition, the wave
impedance of the channel as a waveguide line, From (2.11), (2.3), and (2.6) putting C=1, 8=1, g(0)=1, we
obtain the following expression for the wave impedance:

Zy = Ao/2meye,.
Using (2.11), (2.14), and (2.2) and putting C=1, =1, Y=1, we obtain
Q = (1 — zlct)p V() K, I = (1 — zlct)PV(8)/Z,. (2.19)

It can be seen from (2.19), (2.8), and (2.18) that in the case of an ideal wave considered {an extremely
high-power wave producing ideal electrical conductivity behind its front) the current I in the channel and the
current Q per unit length of the channel are connected by the equation I=¢¢Q, where ¢ is the velocity of light.
It can also be seen from (2.19) that the charge and current fronts propagate with the velocity of light and not
with the drift velocity, although the charges move with the drift velocity. Under conditions when the dissipative
resistance of the channel {the resistance determining the Joule losses) is much less than the wave impedance
(2.18) (as occurs in the case of lightning), propagation occurs almost ideally and, with a constant feeding poten~
tial, is characterized by a profile very close to the rectangular step profile of (2.15).

{2.18)

Using (2.3), (2.4), (2.19), and (2.7) we obtained the desired solution of Maxwell's equations describing the
propagation of the channel waves

E = Q(z, )nyg/2ne,z sin 6, H = I(z, {)ny/2nz sin 6, (2.20)

where the region in which the field is defined is 0 =x=x(f), 0¢= 6= g, 0 < ¢ =2, the vectors ng, n, are the
unit vectors of the spherical system of coordinates x, 6, ¢, while the functions Q(x, t}, Ix, t) are given by
(2.19). The field inside the channel 0 = x=xy(f), 0 =<9 = g; for ideal propagation is zero, but on the surface of
the channel the value of field strength of the wave reaches its highest values given by (2.20). The energy
density of the field u= gyE?2 + ugH*2 and the value of the energy flux density vector II = [EH] according to (2.20)
outside the channel is given by

u == Q%4n’ew® sin 28, I1 = I?/4nleyc,a? sind (2.21)
and is zero inside the channel. The total energy of the field of the wave is obtained by integrating the energy
density u over the volume. For the energy in unit interval of length x we obtain from (2.21) and (2.20) the
expression

U = KQ¥2 4 LI?2. (2.22)

Hence, taking (2.17) into account, it can be seen that K and L are the inverse capacitance per unit length of the
channel and the self inductance per unit length of the channel., Equation (2.22) also follows directly from Egs.
(2.5). According to (2.21) the energy of the channel wave distributed in the space outside the channel, in the
case of thin lightning channels, which they in fact are, is concentrated mainly in the surface of the channel,
which plays the role of a directing waveguide line. When gy«1 it follows from (2.20), (2.17), (2.6), (2.11),
(2.15), and (2.8) that on the surface of the channel §= g, the electric field is given by E;=pyVy/Aex, and in the
greatest transverse cross section x=x,, where the field E, is a minimum, it is given by E;=pV/Agxy. For Vo=
108 V [3, 12], vy~ 108, Ag=17.6, and x,=10° m (which, as we have seen, is characteristic for lightning), we have
Eg~1.3"107 V/m. The characteristic strength on the surface of the channel is greater than this minimum value.
The channel waves, carrying much more intense electric fields, produce in the channels behind their fronts
very high electrical conductivity and therefore propagate almost ideally up to the head of the channel.

3. The Power of the Lightning Taking Losses into Account. The propagation of channel waves without loss
of energy was considered above by solving Maxwell's equations. To describe channel waves taking energy loss
into account we will solve Eqs, (2.5) and (2.9). The channel will be assumed for simplicity to be a confined
axisymmetrical surface, varying in the same way with time and described in cylindrical coordinates r, @, x by
the equation

r = rlz, z,8), re(f) 1, 3.1)

in which the parameters xg(t) and ry(t), which depend on time, are the length and radius of the greatest trans~
verse cross section of the channel respectively. In view of the similarity we have

Vg == xﬂ"’r() == aolbof (3'2)
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where a; is the maximum length of the channel (in the given cycle), and by is the radius of the greatest trans-
verse cross section of the channel at the instant tg, when the vertex of the channel x=xy(t) reaches x=qy. The
channel in the last instant when it exists t=ty, when its vertex reaches the outer limits of the channel, becomes
a regenerated channel, whereas from the previous channel to this instant practically nothing remains. Because
of intense recombination, the air outside the new channel (which appears at the end of the active period of each
cycle) is ionized very little compared with the air in the volume of the newly created channel. In the case of
good conductihg considerably elongated channels, which they actually are in practice, the parameters K and L
in Eqs. (2.5) and the wave impedance Z, do not depend on the specific shape of the channel, and are expressed
with the condition (3.2) by Eqs. (2.6) and (2.18), while the potential V is related to the charge Q per unit length
of the channel by Eq. (2.17), which also follows from the meaning of the quantities occurring in it. It is
important to note the nonadditivity of the local resistance R per unit length of the channel occurring in (2.9).
The integral of R taken over the whole length of the channel, has no physical meaning and can be infinite under
practical conditions. In view of the nonconstancy of the current I over the length of the channel the integral of
EI=RI, expressing the power of the Joule losses taken over the length of the channel has physical meaning.
The ratio of this integral to the square of the input current Iy(t) =1(0, t) can be called the dissipative or Joule
resistance Z,, a small value of which compared with the wave impedance (2.18) means that the propagation is
close to ideal.

The potential of the channel V(x, t) on the basis of x=0, i.e., at the point of contact with the cloud, is
equal to the potential of the cloud Vy(t). The potential of the cloud V,, which varies only slightly over a single
cycle, when the channel wave propagates in each cycle can be taken as constant (it changes abruptly from cycle
to cycle). Then from the condition V{0, t) =V, using (2.17), we obtain

Qo = Q0, t) = Vy/K. (3.3)
Relations (3.3) and (2.10) express the boundary conditions of the problem. The solution of Egs. (2.5) and
(2.9) with the conditions (3.3) and (2.10) has the form

Q = V(EVK, I = Vog(8)/Z, E = Ve(E)/z(t), (.4)
R = ZJ(E)zy(t), & = z/zy(t), 7y = ct, ¢ = ye4, Z = BZ,,

where £(¢), g(£), e(¢) are the desired dimensionless functions for which we take £(0) =1, g(0) =1, h{¢) is a
specified dimensionless function, Z; is the wave impedance (2.18), Z is the input impedance, and B and ¥ are
parameters determined from the solution and the boundary conditions. The resistance R(x) per unit length of
the channel and its dimensionless equivalent h(¢) in fact depend on the field strength of the wave. In the solution
(3.4) the quantity h(¢) is considered as a functional parameter which must be matched to the actual dependence
of R on the field by a rational approximation. Up to the instant t=0 the resistance R is infinite since up to t= 0
the specific resistance of the channel in its basis is infinite. The potential of the channel charged by the pre-
vious wave after it has decayed with time decreases, and the potential difference between the cloud and the
channel increases leading to an increase in the electric intensity between the cloud and the channel. Ata cer-
tain instant at the initial point x=0 where the axis of the channel intersects the surface of the cloud the intensity
reaches a critical value E** such that the intensity on the surface of the ice crystals (usually needle shaped) of
the cloud or the water drops reaches the "breakdown" value E*, Then at the initial point "local breakdown”
occurs (an intense increase in the avalanche ionization) as well as a small region for which R =, while the
dissipative impedance Z, representing the Joule energy dissipation in the region is less than the wave
impedance of the channel Z. This region is an incipient channel for the channel wave described by Egs. (2.5)
and (2.9).

Substituting (3.4) into Egs. (2.5) and (2.9) we obtain

(1 — yEdf/dE + hgip =0, (8-5)
(1 — y*E})dg/dE 4 vEhg = 0,
e = —df/dg 4 yEdg/RdE = hg/B.
The boundary conditions (3.3) and (2.10) with the assumed normalization £(0) =1 and g(0) =1, take the
form (2.13). The solution of system (3.5) with (2. 13) is
1® =p Sh ®® B =), (3.6)

E
g(%) = exp [— Y r@ ey — wgz)],
0
‘ ]
e (8) = P~ () exp [— {rE e — v2§2)J-
; .
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The values of the parameters 8, Y are found from (3.6) using (2.13)

5
th(E)exp [*j b (8) §dE/(1— 3"’)} (3.7
t A [ -

v j 4 - g2 dgs Y= L.

i

f

The velocity of the wavefront from (3.4) and (2.7)c= v ¢y= ¢y, 1.e., itisequalto the velocity of light. For
the class of solutions corresponding to h=const, we find from (3.6), using 3.7),

ey 42 N [ (1 zy (3.8)
j <§) - 1 B(1/2, h/2) g[) 22n (IZ!) (2'1 \“_ h) 3

2(8) = (1 — B2, e(®) = 2(1 — )WY B(1/2, h/2),
where B(p, q) is the beta function.

The parameter S in this case has the form
B = 2-1B(1/2, 1/2). (3.9)

For small h(h «1) we have from (3.9) that =~ 1+h In 2, and for large h(h>1) we obtain from (3.9) the
asymptotic formula f =~ }'wk/2. We will give the following expressions for the functions fj,(¢), gn(&), enis),
i.e,, the functions f(¢), g(£), e(s) from (3.6)~(3.8) for certain specific values of h, and corresponding values of B:

. _.“’ 0<<LE< 1, (1, 0<CE <, (3.10)
0= o, =1, °={O, E=1, =0, B=1,
fi = 1—2(arcsin E)/m, g = (1 — EOY2, ¢ = 2(1 — B3, B; = nf2,
fo=1—8 ga=1—8,¢=1—E8,0,=2
fs = 1—2(8/ T—8 + arcsin E)/m, gy = {1 — E)7,
ez = 4(1 — E%%/%/w, B3 = 3n/4,
fo=1-306— )2, gy = (1 — %)% e, = 3(1 — E%)%2, p, = &/3.

To describe the channel process under conditions which hinder its occurrence, we can reduce the elec-
trical conductivity of the channel, which nevertheless simplifies the calculations. This can be achieved, in
particular, by neglecting the ionizing role of the field, which penetrates into the volume of the channel,
assuming that the field of the wave ionizes the air only on the surface of the channel. In this case the ionization
at any point arises at the instant the surface of the channel passes through it, after which the point will be
inside the volume of the channel, and a relaxation reduction in the ionization coefficient will occur in it due to
recombination processes. As a result, at each point inside the channel the ionization state exists for a cer-
tain time and a corresponding electrical conductivity, which can be called a relic. One other worsening

assumption is to calculate the current in the channel ignoring the part played by heating and the reduction in
the density of the air in the channel particularly on its axis.

The electric field produces an electron concentration n; = x;/¥, in the gas, where y; is the electron multi~
plication factor expressed in terms of the first Townsend parameter «; and the electron drift velocity v by the
equation ;= a,v, and x; is the recombination coefficient [2]. If the field E; which produces the density n
momentarily disappears, the electron density begins to fall from the value n;= xy/x, for the value y; correspond-
ing to the existing field, to zero by Eq. (1) given in [2] for x; =0, i.e., accar ding to the equation dn/dt=-‘x2n2.

The density n will therefore fall in accordance with the equation
o= (Ul o Uyl 4 10), 1y == 1y, %1 =7 Gabs (3.11)
where o, and v correspond to the field E,; producing the density n,.

Experimental values of the first Townsend coefficient o as a function of the field E and the relative
density of the air & (the density of the air in units of its density at the temperature T;=273.16°K and a pressure
pg=10° N/m? are given approximately by the equation (with an accuracy of approximately 309)

0,/8 = A(E/B)? exp (—BWS/E), Ay == 120 V1,212, ©.12)
By = 1,507 V/m, 3-10° V/m<C E/8 < 3-10° v/m,

The lightning usually transports negative charges [3], so that below, to be specific, we will congider
negative (electron) channels. The experimental dependence of the drift velocity of the electrons on the field
can be represented (with an accuracy of approximately 30%) in the form
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v = wE/§ for 0,3.108 V/m<C E/8 < 3-10°¥/m, 3.13)
v = %o(E/8)/* for 3-10°v/m < E/§ <L 300-10° v /m,
%y = 0,057 m2. v-L.sec™! ¢-L, %, = 100 m¥2.v~1/2- sec-l.

Values of the recombination coefficient x; (determined by the dissociative mechanism) are given in [20].
The coefficient x, depends on the mean electron energy, decreasing as this energy increases. The mean energy
of electrons accelerated in the gas by intense ionizing fields is close to the ionization energy of the gas [21, 22].
For air the ionization potential is approximately 15 V, and the mean energy of the electrons in air when there
is an intense ionizing field is close to this value. Thus, in air of normal density for fields of 10"-10% V/m,
which is typical for channels, the mean energy of the electrons is approximately £€=10 eV. The dependence of
the recombination coefficient y, on the mean electron energy € is given by the equation [20] x,= e 8 where &
is the energy in electron volts, and xg= 0.8 1071 m¥%ec. Since this value is obtained by extrapolation, it needs
to be refined experimentally and below we will only use it for tentative estimates.

We introduce cylindrical coordinates r, ¢, x with the x axis coinciding with the axis of the channel. Sup-
pose r is the radial coordinate of the surface of the channel in the transverse cross section x considered, r' is
the radial coordinate of the point considered inside the channel in the same cross section, r —r' is the depth of
the point inside the channel, and v, is the mean radial velocity of the surface of the channel. The time t mea-
sured from the instant when the surface of the channel passes through the point considered, is t=(r —rA,.
Since this is the time that the point is inside the channel, the ionization at the point considered relaxes during
this time, and the electron density, according to (3.11) n=vy/Xy{r —r'+d), d;=Voy. The current density along
the channel J=egnv, where ey is the electron charge, and v is the longitudinal component of the drift velocity.
The longitudinal component E = E, of the electric field on the surface of the channel is much less than the
transverse component E;., and is approximately equal to the total field strength, while the longitudinal compo-
nent v=v, of the drift velocity of the electrons is much less than the transverse component vy=vy, and is
approximately equal to the total velocity. Hence, the transverse component v, of the velocity can be expressed
in terms of the transverse component E, of the field by (3.13), while the longitudinal component of the drift
velocity v=v,E/E,, where E is the longitudinal component of the electric field. For the current density we
have (with 6=1)

J =0FE = epEiys (r — 1" + dy). (3.14)

In deriving this equation we ighored capture, which becomes important when the field is reduced below
3 MVm. On the whole, when the field falls to the critical value EE," =3 MV/m the electrical conductivity in the
channel disappears due to recombination (in a time 7, of the order of 1078-1071" sec) due to the sharp reduction
in the ionization coefficient (3.12) and as a consequence of capture (with a characteristic time of 1078 seo).

The channel which occurs at the point of intersection of the axis of the channel and the surface of the
cloud, propagates with the velocity of light, expanding at the drift velocity, and has a greater radius of the
transverse cross section the further its cross section is from the vertex (since in this cross section the expan-
sion process goes on for a longer time). Hence, the channel has a very elongated needle-shaped form with
zero radius of the transverse cross section at the vertex x=xy(t) and a maximum at the base x=0. Hence, the
surface of the channel (3,1) can be approximated by a semielipsoid of rotation
(3.15)

g =1, 0.
The surface of the channel is approximated below by a diverging cone. This represents the condition of
maximum mathematical simplicity for solving Maxwell's equations for a wave diverging from a point. For an
infinite electrical conductivity of the channel, when there are no Joule losses in the channel, the approximation
of the channel by a diverging body (as one moves away from the cloud) does not distort the propagation pattern
appreciably compared with the more accurate approximation by a body of converging shape. To take into
account the finite electrical conductivity 2 more accurate approximation is necessary, such as (3.15).

The radius of the transverse cross section of the channel at a distance x from the surface of the cloud
will be represented in the form r =ry(t) n(¢), where n=r/ry(t) is the dimensionless radius of the transverse cross
section, and ¢ =x/x,(t). For (3.15) we have

r=ryt(E), n(k) = (1 — Y~ (3.16)

The total current along the channel is obtained by integrating (3.14) over the whole transverse cross

section of area, Multiplying (3.14) by 27nr'dr' and integrating with respect to r' from 0 to r, we obtain
I = E/R = 2newiQrE/y,,
where Q=(1+1/ar) In (oyr+1) — 1. For field strengths of the order of 10%-10% V/m, deter mining the ionization

6.17)
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in the channel, and 6 =1 the value of d1=1/oz, from (3.12) is of the order of 107%-107° m. The radius r of the
transverse cross section of the channel is of the order of a meter, Hence, ayr=r1/d;>1, and in view of the
logarithm, i.e., the very weak dependence of  on ayr the single value Q= Q, can be taken for all the transverse
cross sections of the channel in the calculations, determined from the characteristic value of the radius r=r,,.
Hence, 9~ Qy=1n oyry. It follows from (3.17), (3.4), (2.18), (3.15), and (3.2) that

ho=ho/n(8), Ty = egcqVeralegtiA R Qy =lnozy'vg. (3.18)

The solution (3.6) for (3.18) and (3.15) takes the form
_7’(&) 1 (; exp f— Ry /(1 — 22)[/3‘ Iz : (3.19)

hat >3

I

Ky tha) ) (h—gnis

{ 5o/ Fan 1 f2
exp {— /(1 — 2]

Ky () (18912 7

where K, is MacDonald's function. For hy<«1 =1+hy+0.5h3In hy/2 +0.03681h3 with /1, » 1 6 o VomAags, In (3.19),
as in (3.10), together with (2.13), e(1) =0, but solutions are possible in which e(1)= 0.

The charges in the channel, in view of high electrical conductivity, are concentrated in the surface layer.
The surface charge density w can be expressed in terms of the charge Q per unit length of the channel by the
equation «=Q/2rr. From the boundary conditions the intensity E, on the surface of the channel will he E;=
w/€=Q/2rex. Using (3.4), (2.6), and {(2.16) we obtain
, E, = fEyryir = [Eimy Ey = Vo/Agry = voV/Agxy (3.20)

(E; is the field strength at the base of the channel x=0), where, according to (2.13), (3.4), (2.15), and {2.16) f=1
and n=1. We always have n=1 and usually =1 over the whole length of the channel, apart from an extremely
narrow region in the front. The field strength (3.20) considerably exceeds the critical value Eg=3 MV/m.
Thus, for V0=108 V [3, 12], vy~ 108 (which, as can be seen, in fact occurs), Ay=1n 2py=7.6 for x0=103 m we have
the least value of the field strength on the surface of the channel E;=1.3-107 V m, which was already obtained
above using Maxwell's equations for channels of conical shape. Over almost the whole length of the channel we
usually have f=~1, and from (3.20) we obtain E; >E;. A typical range of field strengths E, on the surface of the
channel is in the range from 107 to 10 V/m. For the calculated field strength of 1.3+ 107 V/m the characteristic
ionization decay time after the field is switched off according to (3.11) t, = 1/%, = 1/a,p taking (3.12) and (2.13)
into account is 0.2°10~10 sec, for a characteristic channel length x;=1 km the parameter Qg in (3.18) in equal
to 12, and in view of its logarithmic nature it depends only slightly (when oyr(>1) on the specific conditions.

The "self-ionization" of the channels together with the electromagnetic speed of propagation of the
channel waves leads to the observed long length of lightning. The expansion of the channel with the drift
velocity while the channel wave propagates with the velocity of light over kilometer distances does not enable
the field on the surface of the channel to fall below the critical value of E8‘=3 MV/m, for which the ionization
process ceases and the electrical coupling with the cloud as a source of lightning energy disappears. Never-
theless the field strength (3.20) is very much connected with the eleciromagnetic nature of the process. At
high supplying potentials, when the propagation is strongly electromagnetic in nature and oceurs quasiideally
{B=1), the values of Qg and I, i.e., the values of Q and I at the base of the channel, are connected by the equa~
tion Q= Iy/cy, as follows from (3.4) and (2.13) or from (2.19). The existence of fairly intense currents equal to
for quasiideal propagation according to (2.19), (3.4), and (2.13) Iy~ V/Z,, are connected with the values Q,
Ip/co=Vy/cyZg, which lead, taking (2.18) into account, to high field strengths E; according to (3.20). In the elec-
trostatic picture for a good conducting streamer limited by the surface (3.15) and adjoining the well~conducting
surface of the electrode, using the well-known solution of the electrostatic problem on a conducting ellipsoid in
an external field [19] it can be shown that Ey=0. The field strength on the surface of the streamer in the region
of the electrode is found to be less than the critical value E(’J' =3 MV/m, and there is no electrical conductivity
in the streamer on the surface of the electrode. The streamer is disconnected, isolated from the electrode, and
cannot obtain energy from the source. Hence, the streamers in air of normal density only develop in fairly
intense external fields of the order of 3 MV/m or greater, when they can acquire the energy necessary to develop
directly from the external field. In the electromagnetic picture of the relaxation theory the energy is trans-
ported along the channel of the discharge in the form of an electromagnetic flux from a very high-power source
(the cloud), situated at the base of the channel. This, however, only occurs during the stage of electromagnetic
activity. At the initial instants of the calm stages electrostatic equilibrium of the channel and the cloud oceurs,
the electric field on the surface of the channel and at its base, i.e., at the boundary with the cloud, vanishes,
and the electrical conductivity at the base of the channel disappears. At the initial instants of the calm stages,
the channel is therefore electrically switched off from the cloud and develops during the calm stages autono-
mously without obtaining energy and charge from the cloud until the channel wave of the next cycle occurs.
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The radius rg of the base of the channel increases as given by the equation dry/dt=v, where the velocity v
is found from (3.13) for E=E, given by (3.20). The channel occurs at the point x=0, r =0, so that ry(0) =0,
Since the channel propagates with the velocity of light ¢y, its vertex x=xj reaches the vertex of the channel
x=ay at the instant ty=a/co. At this instant the radius ry(t) of the base of the channel (where its transverse
cross section is a maximum) reaches its highest value by=ry(t). The average velocity of expansion of the
channel at its base vy=by/ty=bc/a,. Hence, when §=1, taking (3.2) into account, we have

bo = (9,03V o /4c3A)Y, vy = (9ex3V o4 Agay)'® = cylvq- @.21)

When solving the "longitudinal® problem the transverse expansion of the channel at its base is assumed,
according to (3.2), to occur with a constant velocity of v, in accordance with (3.21).

When the channel wave propagates the radius ry of the base of the channel increases with time, while the
field strength E; on the surface of the channel at the base x=0, in accordance with (3.20), decreases. At the
instant when the field strength E, reaches the critical value Ef=3 MVm, the electrical conductivity in the part
of the channel close to the cloud disappears (in a time of the order of 1078-1071% sec). The lightning channel is
electrically disconnected, insulated from the cloud, and the flow of energy from the cloud ceases. In this case
the channel wave, generally speaking, may propagate further for a certain distance as a rectangular electro-
magnetic pulse of finite length along the waveguide. This propagation is not supported by the source, and the
channel wave decays rapidly, using the stored energy reserve. We will assume for simplicity that the propa-
gation of the channel wave ceases immediately after the channel is disconnected from the cloud. Since the field
strength on ghe surface of the base of the channel is, according to (3.20), Eq=Vy/Agr,, the greatest possible
radius ry=by, determined by the condition Vg/Aob'; = E;‘, will be the maximum radius of the base of the greatest
cl;‘annel (the channel of the last cycle), while the length a0=a;‘ of this channel is given by (3.21). Putting a: =1,
by =s, and taking (3.2) into account we have

1= 2¢,Vo/3Ag%, (E5)*2, s = Vo/AEQ, (3.22)
vy = 2e0/3%, (Eg*%, A, = In 2v,.

Since the value of I is the greatest length of the channel in all the cycles it is the length of the lightning.
The value of s, i.e., the greatest radius of the base of the channel in all the cycles, is the maximum radius of
luminosity of the lightning. Substituting into (3.22) the value ¢y=3"- 10% m/sec, and E;‘ =3+10% V/m and from
(3.13) =102 m¥?- V-¥2- sec™!, we find from (3.22) vo=1150 and A,="7.74.

For 1 and s we obtain the expressions 1=5.0*107° Vym, and s=4.3" 1072 Vym. The potentials V; of the
storm clouds lie in the range from 3107 to 10'° Vv [3, 12, 5, 15, 7.

For the least potential of 3107 V the length of lightning is found to be 1.5 km and the radius of the
luminosity is 1.3 m. The experimental minimum length of the lightning is 2 km [3] and 1 km [12], and the
minimum observed radius of the luminosity of the propagating lightning is 0.5 m [3]. For the most probable
value of the cloud potential of 10® V [3, 12] the theoretical length of the lightning is 5 km, and the radius of the
luminosity is 4.3 m. The experimentally most probable ("characteristic") length of the lightning is 5 km [3,

5, 7]. The radii of the luminosity of the lightning lie in the range from 0.5 m to 5 m, which is also the range
given by calculation. For a cloud potential of 3° 108 V [5] the length of the lightning is 15 km, and according to
experimental data is 14 km [5]. The theoretical value of the maximum radius of the luminosity in this case is
13 m, but there is no corresponding experimental data. Such longer lengths of lightning are usually horizontal,
and develop inside the clouds where it is difficult to measure the parameters of the discharge channel. For a
cloud potential of 4 - 10° V [15] the theoretical length of the lightning is 200 km. The greatest length which has
in fact been observed is 150-160 km [11, 6]. The value of the potential of 101% v [3] is in fact a nonrealizable
upper limit, and therefore lightning with a corresponding length of 500 km does not occur. Thus, the relaxation
theory determines lightning lengths in agreement with observational results. Note that according to streamer
theory the length of the lightning should be 0.2 km [10], which is 25 times less than the experimental charac-
teristic length of 5 km [3, 5, 7], and 750 times less than the experimental maximum length of the lightning of
150 km [11, 6].

When a channel wave propagates conditions are possible in which high electrical conductivity produced in
the channel by the field of the wave behind its front occurs not immediately behind the front but at a certain
distance from it. This occurs when the electric field strength of the wave is comparatively small and reaches
a value sufficient for avalanche ionization only at a certain distance from the front. Then at the point where the
high electrical conductivity occurs, a second, in this case the main, front occurs. The electrical conductivity
of the channel in the region between the fronts — the region between the leading and main fronts — is connected
with the initial bare ionization of the channel and is extremely small. Although the relative energy losses of the
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field of the wave in the region between the fronts is high, the main flow of energy occurs behind the main front
and with respect to the total energy of the field of the wave the losses in the region between the fronts is
negligibly small. Hence, the energy losses in the channel wave are determined by dissipation in the region
behind the main front, and if the relative energy losses there are small, propagation occurs almost ideally
with the velocity of the main front, very close to the speed of light. Note that according to the Sommerfeld—
Brillouin theorem [19] the leading fronts of the electromagnetic excitations propagate with the fundamental
velocity (the velocity of light in a vacuum) irrespective of the properties of the medium, while the leading front
must usually be close to the main front, the velocity of which depends on the specific propagation conditions.

The propagation of the channel wave with the leading and main fronts can be described most simply using
a piecewise-constant function h(¢) in(3.4). In the region 0 =< ¢ =< ¢, behind the main front ¢ = ¢4 the field produces
high electrical conductivity characterized by the quantity h=h,, while in the region between the fronts g;<£ =1,
where the electrical conductivity corresponds to the initial bare ionization and is extremely small, h=h,>h,.
Since the function h{¢) is always finite, h = «, from (3.6) and (2.13) it follows that Y=1, i.e., the leading front
xq{t) according to (3.4) propagates with the velocity of light, x=cgt. The main front x(t) propagates in this
case according to (3.4) with a velocity ¢; = ggcq, x3=C t= £4Cot. The parameter ¢4 is found using the solution
(3.6) and the additional condition expressing the fact that the intensity E, on the surface of the channel defined
by (3.20) on the main front x=x,, £= ¢4, where r=r,, is equal to the critical field strength Ef=3 MV/m, for
which high electrical conductivity is produced in the channel

FE) N (R Ey = K. (3.23)
From the solution (3.6) for the conditions when hyh( «1, 1 = ¢, <1, we have
fE) =011 —E)/2, B =270 B(1/2, hy/2), (3.24)

where B(p, q) is the beta function. In the case of a cylindrical channel r =ry we have ry=ry, n{¢y) =1, and for
the conditions when 1 — ¢4 <1, using (3.23) and (3.24) we find the velocity ¢; = £;¢; of the main front
& = [1 — 21 (BES/ By ], 6.29)

Using the values determined above, namely, vo=1.150 - 108, Nog=7.74, Gp=12, =107 15 m¥%sec, and o=
100 myz/VV2 sec and takmg 5=1, we find from (3.18) hy=0.02, and f=1.02=>1, and from (3.25) c;=[1 - -1
(E, /Eo 100)¢c,. Since Ej =3 MV/m and from the estimate given above Eg=13 MV/m, we have cy=(1 —2°10"%c,,
i.e., the leading and main fronts practically coincide. In practice, the channel has a form which is expanding
from the head to the base, i.e., approximately the form given by (3.15). At the points 0 < ¢ =¢y according to
(3.18) and (3.16)h=hy/ (1 — 52)’/2, and for ¢ > ¢4 the value of h is determined by the initial small ionization of the
charged channel (the part of the channel in front of the wavefront), along which propagation cccurs. If when
0K ECE bo=0/(1 — E)Y?, and for ¢> ¢ for the value of h we have i < hy=1h/(1 — 91)1/9, and the main front
moves more rapidly than in the case when h=hy/(1 — ¢£) 12 over the whole range 0= ¢=1. I fact, along the
ideal line (h=0) the main front, like the leading front, propagates with the velocity of light, and for h = 0 as h is
reduced the velocity of propagation increases. Hence, a lower estimate of the velocity of the main front when
h «hy can be obtained using (3.23) with (3.16) and (3.19).

According to (3.5) and dg=pv¢df, and, since Y=1 and for hy<«1 f=1, taking (2.13) into account we have
for the neighborhood of the point ¢=1.1 = <1, f~g. Equation (3.23) has the form

NE) = kog(E), (3.26)

where k0=E0/E:. Hence, using (3.16) and (3.19) for ho «1 we obtain the equation for ¢y : =1n kom =hg, p =
gy from (3.16). For hy=0.02, E;=13 MV/m, and EO =3 MV/m we have ¢£;=0.999996. Hence, the velocity of the
main front ¢;= £4¢y is almost identical with the velocity of the leading front, i.e., the velocity of light.

The solutions considered describe the propagation of locally fed channel waves when there is no external
field. In practice they include the usual cases for lightning when the part played by the external field in the
ionization of the gas in the channel is negligibly small compared with the part played by the inherent field of the
propagating wave. If the external field has a considerable influence on the ionization of the gas in the channel
the propagation conditions are improved. The inherent field of the channel wave on the surface of the channel
is almost normal to this surface, since the longitudinal component is small compared with the transverse com-
ponent. Inside the channel the transverse component is negligibly small since it is related to the charges of
the channel, which are concentrated on its surface. Hence, inside the channel the main component is the longi-
tudinal component of the electric field of the wave, i.e., the electric field of the channel wave inside the channel
is longitudinal (parallel to the exit of the channel). This field is usually small and insufficient to ionize the gas
ingide the channel. If there is a longitudinal external field approximately equal to the critical value E;‘ =
3 MV/m, the inherent longitudinal field of the wave, added to the external field, leads to intense ionization over
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the whole volume of the channel, which produces its high electrical conductivity. Unlike the relic electrical
conductivity produced by the surface field and concentrated on the surface of the channel, which occurs when
there is an external field, the "active® electrical conductivity has a volume character. In this connection, when
describing the propagation of the channel wave in intense external fields, to simplify the calculations the relic
electrical conductivity can be ignored. The actual conditions of propagation of the channel waves are favorable,
since the energy losses in the channel waves are less the greater the electrical conductivity occuring in the
channels,

Suppose that a field with an electric intensity E due to ionization arrives in a certain volume of the gas.
At the same time intense recombination occurs. As a result, in unit volume of the gas an electron number
density is established given by [2] ny= x;/xs, Where y; = o,V is the electron multiplication factor, and ¢y and v
are given by (3.12) and (3.13). The current density is J=egnv=eya;v¥y,. Using (3.12) and (3.13) and the value
given above of yy= 10715 m¥sec we obtain for the current density

Ji8 = C,(EI8)*? exp (—By8/E), C; = 192 - sec-1.V-32m —572,
For mathematical simplicity this relation can be approximated by the approximate equation
J =0(E — E*?® =0, (8 — E;8), (3.28)

0= 2,6-1072 AN E} = 3.10° V/m,

3.27)

where, when E < E* the current density is assumed to be zero. This equation in the most important range of
E/5 from 3-10% V/m to 3° 107 V/m gives too low a value of the current density determined from (3.27) while in
the range from 5° 10% V/m to 3° 107 V/m it reproduces it with an accuracy to within 10%. (Similar equations
for the current density in [1, 2] are based on erroneous initial data.)

The most interesting and simple case mathematically is when the external field is parallel to the axis of
the channel and has a value equal to the critical value E*, corresponding to the beginning of local breakdown
(an intensely increasing avalanche ionization at the point considered). In this case the total longitudinal elec-
tric field will be E'=E*+E, where E is the longitudinal field of the wave, Then, substituting into (3.28) for E
the quantity E'= E*+E (where the quantity E is now related to the field of the wave) we obtain

J = oE? = 6,6-'E?, 0, = 2,6-10-2A/V 2. (3.29)

Suppose S=S(x) =mri(x) is the transverse cross section of the channel at a distance x from the cloud.
Then in terms of this transverse cross section I=JS, in which case from (3.29) we have E= (I/()'S)I/Z. Denoting
further by E and I the corresponding values, taking their signs into account (and not their absolute value as
above), and using (3.16), we obtain

E = I{muic[I)2 (3.30)

The system (2.5) and (3.30), substituting (3.4) and taking (3.16) into account, reduces to the equations

(1 — PEIndfids + 1/ Zglap = O, ©.31)
(1 — y*&%)ndg/dE + PyE) 2¢/ap = O,
Pie = yntdg/dt — Pndf/dg =} 2pg/a.

The boundary conditions (3.3) and (2.10) with the assumed normalization £(0)=1, g(0) =1 take the form

(2.13). The channel parameter « in (3.31) has the form
o= 0;).\“1"0 480(:0\';6.

The solution of (3.31) with (2.13) can be found in the form

(3.32)

‘ 3.33
FEo=a 6@ —vE), §© b0 ©2 8.33)

1
e(8) =G E/en(®), GE = y_j EdE/(1 — v7E) 1 (B),

where the dependence of the parameters g and Y on « is given by the equations

! (3.34)
B =2aG*(0), |G@E &1 —yE)NE) = a.

[

The solution (3.33) and (3.34) for an eliptic channel (3.15) is given in [1]1. For a <1 this solution has the
form f(g)=1—¢, gle) =1~ 52, e(¢) =1, and the dependence of the parameters 8, and Y on « is given by the expan-
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sions $=2 a+10a/9+..., Y=a =10 o¥9+,... Whena <« 1,which corresponds to lightning conditions, the solution
has the form f(¢) = 1, g(g) = 1, e(z) «1 for all ¢, besides the narrow region near the front of width A =1 —y =

w?/16q, where f(¢) and g(¢) fall rapidly to zero on the front, and e(¢) increases rapidly to a value on the front
of e(1)=8r2. The parameters S8 and ¥ can be expressed in terms of the asymptotic formulas

Bt 4V 2, v~ ValBa - n%) 1 — a?/ba.
Using the values obtained above for ¢;=0.026 A v?, ye=1150, and Ag=7.74 for V= 10® V we obtain from

(3.32) @ =5730. The values of 8 and ¥ are found to be 8=1.02 and ¥=0.9999. The front xp=yc,t is in this case
the main front, since the field strength on the front exceeds the critical value Eo =3 MV/n. In fact, the external
field strength under the conditions assumed in this case is equal to E{ and addition of the wave field leads to
intense ionization immediately behind the front, where the field of the wave has a finite value. There is no
leading front under the conditions considered since we have ignored the relic and bare electrical conductivity.
The velocity of the main front c=ycy=0.9999¢c, hardly differs from the velocity of light ¢,

Since the characteristic impedance Z, is, by definition, the input impedance of an ideal line, the channel
behaves with respect to the channel wave of specified power more ideally the closer the input impedance Z is to
the characteristic impedance Z;. Hence, the condition for the channel to be ideal like a waveguide line for
channel waves transferring the lightning energy, is

2 =7 —2,LZ, (3.35)

It can be shown that the value of Z' differs from the dissipative impedance Z; determined above, which
determines the Joule losses, only by a factor of the order of unity, and the quantity r=ZYZ, ~7Z,/Z; expresses
(for Z'<«Zg) the fraction of the energy lost by the channel wave as it propagates. The condition (3.35) for the
propagation to be ideal taking (3.4) into account can be written in the form

D=2ZJ)Z —2Z) =1/p —1) > 1L (3.36)

The lost fraction of the energy is y=1/D. The quantity D which expresses by the condition D« the ideal
nature of the propagation, is similar to the selectivity. The usual idea of selectivity relates to linear systems.
A lightning channel is not such a system, since its electrical conductivity depends on the field of the propagating
wave. However, the value of D from (3.36) represents the departure of the process from ideal, and as D~ it
defines propagation without loss. In this sense the quantity D can be regarded as the selectivity, which, how-
ever, depends not only on the properties of the channel but also on the power of the propagating wave. From
(3.36) for large D for the solutions (3.4), (3.19), and (3.4) and (3.33) for (3.15) and (3.16) we have the following
expressions: D=1/hyand D=v0/2. Using the calculated values of hy and « for V=108 V, hy=0.02, and o=
5730 we obtain D=50 and 54 respectively.

Note that when a considerable amount of energy is transmitted along the lightning channel we lmve D=1,
since in this case the losses are of the order as the transmitted energy, and greater amounts of energy of the
order of the electric energy of the cloud may reach the earth.
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